
The Super-Easy Guide to the Microsoft®
Outlook® Object Model

White Paper

Published: March 1999

Table of Contents

Introduction...1
Why Should I Learn How to Use Outlook Object Model?......................................1
Using This Guide..2
What You Need to Know Before You Get Started..2
What You’ll Know When You Finish the Lessons..2
Setting Up..3

Lesson 1: Getting Started..3

Lesson 2: Programming Concepts: Sub…End Sub and Procedures.................................6

Lesson 3: Programming Concepts: Objects, Methods, and Properties............................7

Lesson 4: Real-World Example #1...9
Using Events...10

Lesson 5: Creating Your Own Dialog Boxes...12
Making Your Dialog Box Work..14

Lesson 6: Programming Concept: Collections..15
Collections in Outlook...15
Methods and Properties of Collections...16

Lesson 7: Programming Concept: If This, Then That..17

Lesson 8: Real World Example #2...20
Step 1: Create a Contact..20
Step 2: Create the Dialog Box...21
Step 3: Make It Work...21
Intermission—Using the VBA Debugger...22
Step 4: Finishing the Code..23

Where to Go from Here..25

Appendix: Hands-on Challenge s Answers and Explanations.......................................27

The Super-Easy Guide to the Outlook
Object Model
White Paper

Published: March 1999

For the latest information, please see http://www.microsoft.com/office/

Introduction
Customizing Outlook with the Outlook object model is easy. Really easy. You
don’t need a Ph.D. in Computer Science. You don’t need to know C or C++ or
any programming language. You don’t need to know anything about object
models. You don’t even have to know how to program your VCR.

But don’t take my word for it. Let me show you how easy it is. Take a look at
these four lines of Outlook object model code:

Set NewMail = Outlook2000.CreateItem(olMailItem)
Set receiverOfMyMail =
newMail.Recipients.Add("everybody@thewholeworld.com")
NewMail.Subject = "The Outlook object model is Easy!"
NewMail.Send
Can you figure out what this code does in Outlook?

The Outlook object model uses language that for the most part is already
familiar to you. For instance, CreateItem creates a new item in Outlook. Add
adds something to an item in Outlook. Subject refers to the subject of an item.
Send tells Outlook to send the item.

In these four lines of code, we create a new mail item, address it to
“everybody@thewholeworld.com,” set the subject to “The Outlook object model
is Easy!,” and send it.

I told you it was easy. In just these four lines, you used Microsoft’s messaging
program to send an e-mail to the whole world declaring the benefits of the
Outlook object model.

Why Should I Learn How to Use Outlook Object Model?

The Outlook object model allows you to customize Outlook to suit your
organization’s specific needs. The Outlook object model is great when someone
in your organization demands (or if they’re polite, requests) additional
functionality in Outlook—and they need it right away.

The Super-Easy Guide to the Outlook Object Model 1

For example: A vice president of your company storms into your office and says,
“Every time I send a meeting request, I also need to inform certain people about
the meeting without inviting them. Outlook won’t let me do this!”

You know, however, that with just a little customization, Outlook will let your
vice president do this. Next week, you walk into the vice president’s office and
hand him a solution to the problem, which you created yourself in a few hours
using the Outlook object model. Of course, he doesn’t have to know how easy it
was.

This could be you! (individual results may vary)

Using This Guide

This guide is organized into eight lessons. Each lesson is hands-on—you will use
the lessons with Outlook as you go. The guide is best used not as bed-time
reading but as be-in-front-of-your-computer-and-try-it reading.

At the end of each lesson, there will be a “Hands-on Challenge .” You should try
to complete each challenge—not only are they fun, but they will help you
measure your understanding of the lessons. Answers and explanations are
provided in the appendix.

What You Need to Know Before You Get Started

All you need is a working knowledge of Microsoft Windows and a familiarity with
Microsoft Outlook. That’s it.

If you already have programming experience, you can probably just glance at
the “Programming Technique” sections, but the rest of the material may still be
useful to you.

What You’ll Know When You Finish the Lessons

After going through this guide and doing all the examples and exercises, you will
be able to develop applications using the Outlook object model. You will also be
able to discover on your own how to find the right tools in the Outlook object

The Super-Easy Guide to the Outlook Object Model 2

model to solve a given problem. You will understand some key programming
concepts, and you will gain a working knowledge of the Microsoft Visual Basic
programming language.

In a nutshell, with the help of this guide, you will be able to apply the Outlook
object model to meet your organization’s needs.

Setting Up

To use this guide and go through the included examples, you need to have
Outlook 2000. Because this guide uses Visual Basic for Applications (VBA), a
new feature in Outlook 2000, the examples and lessons will not work with earlier
versions of Outlook.

You do not need any special development tools to use the Outlook object model.

Lesson 1: Getting Started
We’ll be using Visual Basic for Applications (VBA) for all the lessons in this guide.
Visual Basic for Applications is a version of Microsoft Visual Basic integrated into
Microsoft Office applications, including Microsoft Outlook. Solutions you create in
VBA are called macros. A macro is a series of instructions in Visual Basic that
perform something useful. When you write macros to perform tasks in Outlook,
you write Visual Basic instructions that use the Outlook object model.

To start writing a macro:

1. Start Outlook 2000 (if it’s not already running).

2. Point to Macro on the Tools menu, and then click Macros.

3. Now you need to come up with a name for your first macro. A macro name
can’t have a space in it, so type MyFirstMacro.

4. Click Create.

Outlook will now automatically start the Visual Basic Editor, as shown in the
illustration below:

The Super-Easy Guide to the Outlook Object Model 3

The Microsoft Visual Basic Editor

By default, the Visual Basic Editor displays three windows:

 Code window (the big window on the right labeled something like
“Project—Module1 (Code)”). This is where you write your Outlook macro
code.

 Project Explorer window (top left, labeled Project_Project1). This
window shows all the Microsoft Outlook Objects and modules available to
you. (Don’t worry if you don’t know what Outlook objects are yet. That’ll
come later.) This window allows you to easily view and manage any number
of VBA files.

 Properties window (bottom left, labeled Properties—Module1). This
window displays the current set of properties for the selected item.
Currently, the selected item is Module1.

Now let’s use each of these three windows:

 “Module1” is such a dry and impersonal name, don’t you agree? Let’s
change it. In the Properties window, go to the area where it says “(Name)
Module1”—(Name) has a blue background. Select the text “Module1” and
type something like “MyFirstModule.” Notice that the name was changed in
the Project window and in the title bar of the Module window!

 Now in the Project Explorer window, click the little plus sign next to
“Microsoft Outlook Objects” to see what’s inside. Currently, there’s only one
object, but it’s a big one. It’s called ThisOutlookSession. It’s from this
object that most of the fun happens.

The Super-Easy Guide to the Outlook Object Model 4

 Go to the Code window for your module which you just renamed,
“MyFirstModule.” (If it’s not already open, you can open it by double
clicking the name, “MyFirstModule” in the Project Explorer Window.

To complete the macro:

1. Now let’s enter some code in the MyFirstMacro routine. Enter the following:

Sub MyFirstMacro()
Set NewMail = ThisOutlookSession.CreateItem(olMailItem)
NewMail.Subject = "(your name here) says: This really is easy! :)"
NewMail.Display
End Sub
You don’t have to know how or why this code works. You’ll learn that in
future lessons.

2. Now let’s see it in action! First, close the Visual Basic Editor by clicking Close
and return to Microsoft Outlook on the File menu.

3. In Outlook, point to Macro on the Tools menu and then click Macros.

4. The Macros dialog box will open with MyFirstMacro already selected. Click
Run.

Did a mail message pop up with the subject you set using the Outlook object
model? Congratulations! You’re now an official Outlook object model
programmer.

If an error dialog box came up, no big deal. Click the Debug button. Make sure
the code looks exactly as is shown above and do steps 2-4 again.

About Security

Outlook will check whether or not you have any macros when you start Outlook.
That is why you may see the following dialog box when you start Outlook:

When you see this dialog box, click the Enable Macros button. This will allow
Outlook to run the macros you create. You can also choose to avoid this dialog
box by reducing the level of security on your macros. To do so, point to Macro
on the Tools menu and then click Security. Select the Low security option and
click OK.

The Super-Easy Guide to the Outlook Object Model 5

Hands-on Challenge #1

Try adding one line to the code to set the body of the message to “This is where
the content of the message goes.” (or any message you like). Hint: You will be
using your “NewMail” message and the key word Body.

Lesson 2: Programming Concepts: Sub…End Sub and
Procedures
So now that you’ve gotten your feet wet in this stuff, it’s time to learn a bit
about the water you’re standing in. Let’s take a close look at the code you just
wrote:

Sub MyFirstMacro()
 Set NewMail = ThisOutlookSession.CreateItem(olMailItem)
 NewMail.Subject = "(your name here) says: This really is easy! :)"
 NewMail.Display
End Sub
Let’s first look at the Visual Basic key words Sub and End Sub. Sub…End Sub
are used to begin and end a macro, following the pattern shown below:

Sub AnyNameHere()
 Some of that cool refreshing Object Model code here
End Sub
AnyNameHere is the name of the name of a macro or procedure. A procedure is
a small set of code that you create that does something. MyFirstMacro is an
example of a procedure. A procedure doesn’t have to be a macro, however. You
can create a procedure and then “call” that same procedure from another
procedure, as in the following example:

Sub MyFirstMacro()
MakingMail

End Sub
Sub MakingMail()
Set NewMail = ThisOutlookSession.CreateItem(olMailItem)
NewMail.Subject = "Hey, this Sub/End Sub thing is easy too!"
NewMail.Display

End Sub

If you run MyFirstMacro, the procedure MakingMail will run and you will see a
mail message with the subject, “Hey, this Sub/End Sub thing is easy too!”

So why would you want to do this? Creating separate procedures allows you to
organize your code in a nice, clean way, and it allows you to do common
procedures easily. For example, say we needed to create and display three
different mail items with the subject, “Hey, this Sub/End Sub this is easy too!,”
you could do that by changing the code in MyFirstMacro as follows:

Sub MyFirstMacro()
MakingMail
MakingMail
MakingMail

End Sub

The Super-Easy Guide to the Outlook Object Model 6

Hands-on Challenge #2

Edit your MyFirstMacro macro in the Visual Basic Editor and change the code to
use a new procedure such as the MakingMail procedure to create a new piece of
mail five times.

Lesson 3: Programming Concepts: Objects, Methods,
and Properties
At some point, you may have heard all the hoopla over “object oriented”
programming. Object oriented programming is the key concept behind C++ and
Java, the most widely used programming languages today. What you probably
didn’t know, however, is that just by finishing lessons 1 and 2, you can now call
yourself an object oriented programmer!

That’s right. The Outlook object model uses object oriented programming.
Fortunately, to use and understand the Outlook object model, you don’t need to
take a class in the subject or write a thesis on it. To gain a working knowledge of
the Outlook object model, you only need to know three concepts:

Concept Description Example

Object A “thing” Mail item

Method Something a “thing” can do Show itself to the user

Property A characteristic of a “thing” Subject

Everyday things can be thought of as objects, methods, and properties. For
instance, consider a car as an object. A car object has methods, which are
various things it can do, such as Drive, Start, Turn Left, Turn Right. A car also
has properties that describe it: the color is beige and the number of headlight is
two.

“I am an object. As a car object, I have methods which are things I can do: Drive, Start,
Turn Left, Turn Right. I also have properties which are characteristics that describe me:
My color is beige and the number of headlight I have is two.”

Let’s take a closer look at the code you’ve already written and see where the
objects, methods, and properties are:

Set NewMail = ThisOutlookSession.CreateItem(olMailItem)
NewMail.Subject = "Hey, this Sub/End Sub thing is easy too!"
NewMail.Display
There are two objects in this code. The first is NewMail. The second is
ThisOutlookSession. It’s easy to visualize both a mail item and a session of

The Super-Easy Guide to the Outlook Object Model 7

Outlook as “things.” Incidentally, the Outlook object model is simply a list of the
objects that we can use to program Outlook.

Whenever you first use an object, you have to use the Set key word. Objects
take up memory in the computer; the Set key word allocates the memory
required for an object.

You can give objects any name you want. In the above example, I gave the mail
item object the name, NewMail, but you can change the name to suit your
mood. The object, ThisOutlookSession was created for us—you can see it in
the Project Window under Microsoft Outlook Objects.

The MyFirstMacro code contains two methods. The first is CreateItem. The
second is Display. A method is always associated with an object. In this case,
CreateItem is associated with the object, ThisOutlookSession. To use a
method, you simply place a period in between the object and the method. For
example, NewMail.Display.

As described above, a method is “Something a thing can do.” In the example
you’ve written, an Outlook Session can create a piece of mail—CreateItem. And
a piece of mail can display itself to the user—Display.

Sometimes methods need additional information. For example, the CreateItem
method needs to know what type of item to create. We tell it to create a mail
item by including that information, olMailItem, in parenthesis after the name of
the method. Some methods require more than one piece of information, while
others, such as Display, require none.

The MyFirstMacro code contains one property. It is Subject. Like a method, a
property is always associated with an object. In this case, Subject is associated
with the object, NewMail. To use a property, you simply place a period between
the object and the property. For example, NewMail.Subject.

Once again, think of a property as “A characteristic of a thing.” For instance, the
subject is a characteristic of a mail item. Another example: The start time is a
characteristic of an appointment item.

One last thing to know: Every object is of a specific type. Each type of object has
its own set of methods and properties. In the above example, NewMail is a
“mail item” object. Mail items have methods, such as Display, and properties,
such as Subject, that other types of objects do not have. For example, the
following instruction:
ThisOutlookSession.Subject = "Hello"
would not work because objects of type “Outlook Session” do not have properties
called Subject.

Hands-on Challenge #3

Look at the following make-believe Object model code and determine which
parts are objects, methods, and properties (there are three of each):

Set PetStore = ShoppingMall.GetStore(aPetStore)
PetStore.OpeningTime = 9 AM
Set Dog = PetStore.GetPet(aDog)
Dog.Breed = "Cocker Spaniel"
Dog.Color = "Blond"
Dog.WagTail

The Super-Easy Guide to the Outlook Object Model 8

Lesson 4: Real-World Example #1
Suppose that each day, you need to order lunch for the people in your
group. There are a few restaurants to order from, but you only want to
order from one. The best way to choose the restaurant is to take a
vote. Let’s consider how you would do this as a user in Outlook:

1. Create a new mail item.

2. Click Options on the View menu.

3. Select Use voting buttons

4. Enter the names of the restaurants, each separated by a semicolon. For
example: “Taco Temple; Burger Palace; Chicken Chums”

5. Close the dialog box.

6. Address the mail to your co-workers.

7. Enter in the subject and text in the body explaining to your co-workers what
the mail is for.

8. Send it.

The good news is that Outlook provides a good way to poll many people. Your
co-workers will be able to choose by simply clicking on a button with the name
of the restaurant they want.

The bad news is that you’ll have to do the same above eight steps every
morning at work. This is where the Outlook object model can help: We’ll create a
macro to turn those eight steps into zero steps.

Let’s jump right in and create this macro:

To create the PollRestaurant macro

1. Create a new module called PollRestaurant. In Outlook, point to Macro on
the Tools menu, and then click Macros. Type the word PollRestaurant and
click Create. The Visual Basic Editor starts up with your new PollRestaurant
macro ready to fill in.

2. Type the following code:

Sub PollRestaurant()
Set NewMail = ThisOutlookSession.CreateItem(olMailItem)
NewMail.Subject = "Please open and make your vote for lunch!"
NewMail.Body = "Click one of the buttons above to make your" &_

"vote. I’ll be tallying at 11 AM. " &_
"Lunch will be in the break room at noon."

NewMail.VotingOptions = "Taco Temple; Burger Palace; " &_
"Chicken Chums; Pasta Hut"

Set receiverOfMyMail =
NewMail.Recipients.Add("hungrypeople@mycompany.com")

NewMail.Send
End Sub
Note: hungrypeople@mycompany.com is a distribution list of people who will
be having lunch.

3. Run your macro to see it in action. You will send out a mail message to the
distribution list with the voting options you selected.

mailto:hungrypeople@mycompany.com

The Super-Easy Guide to the Outlook Object Model 9

Note: Because you are not displaying the item, you will not see anything.
Check to see if the message got sent by checking your Sent Items folder.

That’s it! You’re done! And to do this, we only introduced one new line
of code:

NewMail.VotingOptions = "Taco Temple; Burger Palace; " &_
"Chicken Chums; Pasta Hut"

VotingOptions is a property of the NewMail object. We set the VotingOptions to
be a series of restaurants separated by a semi-colon. (The same thing you would
do if you added the voting options to the message manually.

Using Events

Now you have a nice little macro that sends out a piece of mail asking your
employees of their lunch choice. But you still have to actually run the macro for
it to work. Now say, for instance, the first thing you do when you get to work in
the morning is to start up Outlook. And let’s say that the last thing you do
before you leave work is to quit Outlook. Wouldn’t it be nice to have Outlook
automatically run your macro every time Outlook starts up? Then you could send
out the lunch polling mail every morning without doing any work at all!

You can do that by using an object event. An event occurs when something
happens to an object. For instance, when you receive mail, a NewMail event
happens to the ThisOutlookSession object. When you start up Outlook, a
StartUp event happens to the ThisOutlookSession object.

To illustrate further, think back to the car analogy. You might want the car
object to do something when someone puts a key in the ignition. In this case,
you would use a car event called something like DriverPutKeyInIgnition. When
that event gets called, you would want to start up the car’s engine and get ready
to go.

“There are several events I respond to. These include turning the key in my ignition,
shifting to a different gear, pressing on the gas pedal, and pressing on the break pedal. I
have to do the right thing whenever a driver does one of these events.”

To run your macro each time Outlook starts up

1. Start up the Visual Basic Editor (if it isn’t already open).

2. Click on the “+” sign of the Microsoft Outlook Object item in the Project
Explorer Window. You should see an item under it labeled
“ThisOutlookSession.”

The Super-Easy Guide to the Outlook Object Model 10

3. Double-click on “ThisOutlookSession.” A Code window should appear with the
title, “ThisOutlookSession.”

4. Notice two drop down list under the title bar of the Code window. The left
drop down list has a list of objects associated with ThisOutlookSession.
Click there and select the object Application.

5. The right drop down list has a list of macros and events associated with the
item selected in the left drop down list. Click on the right drop down list and
select “Startup.” Startup is the event you will be using. (Note just for fun the
other events you can choose from.)

6. A Startup procedure will appear in the Code window. To call your macro,
simply type the name of the macro in the procedure. Example:

Private Sub Application_Startup()
PollRestaurant

End Sub
That’s it! You’re done! Quit Outlook and start it up again to see if it worked.

Hands-on Challenge #4

Create a new macro that polls your co-workers for their breakfast food choice.
Because you’ll want people to vote at the end of the day (so you can order
breakfast first thing in the morning), have the macro called every time you quit
Outlook.

The Super-Easy Guide to the Outlook Object Model 11

Lesson 5: Creating Your Own Dialog Boxes
Now for one of the coolest parts of VBA—forms. A form is a dialog box-
like object that you can create and design in VBA. You can add
checkboxes, text, pictures, and all sorts of Windows features to your
form without writing a single line of code.

Why do you need forms? Sometimes your macro will need to
communicate information to users or get information from users. For
instance, you may want to show a progress dialog box while your
macro is running, or you may want to let users set some options
before your macro does its magic.

To demonstrate, let’s go back to the PollRestaurant macro you created
in Lesson 4. The PollRestaurant macro sends out a piece of mail with
voting options every time you start up Outlook. But what if you start
up Outlook at different points throughout the day? What if you go to
the office on the weekend and start up Outlook? You certainly wouldn’t
want to flood your co-workers e-mail boxes with “What do you want
for lunch?” e-mail five times a day. The solution is to present yourself
with the option to send out the mail every time you start Outlook.

To create the “Lunch for Co-workers” dialog box

1. In Outlook, point to Macro on the Tools menu, and then click Macros.

2. Let’s create a new macro. Type the name “PollRestaurentPrompt” and click
Create.

3. Now you should be in the Visual Basic Editor. Click UserForm on the Insert
menu.

Your form will appear along with a toolbox of user controls. The form is
where you design dialog box that the user will see and interact with.

The Super-Easy Guide to the Outlook Object Model 12

4. Click on the form to select it. Look at the Properties window (the one at the
lower left.) Change the (Name) property to “PromptDialog.” Press Return.

5. Change the Caption property to “Lunch for your co-workers?” Press Return.
Notice that the title of your form will be what you just typed.

6. Hover over the different user controls in the toolbox and look at the
screentips to see what each of them is.

Before we continue, let’s consider for a moment what we’ll need for our
PollRestaurantPrompt macro. We want to give the user a choice to send or
not to send the mail with the restaurant voting options. A simple way to do
this is to add some explanatory text and then add two buttons, “Send Lunch
Mail” and “Don’t Send Lunch Mail”

7. Select the object in the toolbox marked Label—it’s the graphic with the
capital A.

8. Go to the form in the PromptDialog window. Click and drag the mouse to
select the area where your explanatory text will be. (Don’t worry, you can
always move and resize it after you create it.)

Note: The label you just created is an object. It has methods and properties
just like a mail item or an Outlook session.

9. Look at the Properties window (on the lower left) for list of the label’s
properties. The first few you should see are (Name), Accelerator, and
AutoSize.

10.Click on the value for the Caption property (it’s probably something like
“Label1”). Type a new value, for example, “Do you want to poll your co-
workers for their lunch preference?”

11.Press Return. You should see in the Module Window that the label shows
what you just typed.

12.Now you need to create your two buttons. Click the form to show the Toolbox
again. Select the object marked “CommandButton”—it’s the simple rectangle
graphic.

13. Just like you did with the label in step #8, create a button in your form.

14.To create a second button, click on the CommandButton object in the
Toolbox and drag another button onto your form.

15.Select one button and set some properties in the properties window. Set the
(Name) to be “Yes.” Set the Caption to be “Send Lunch Mail.”

The Super-Easy Guide to the Outlook Object Model 13

16.Select the other button and set the properties in the properties window. Set
the (Name) to be “No.” Set the Caption to be “Don’t Send Lunch Mail.”

Making Your Dialog Box Work

So now you have this cool dialog box. But it doesn’t do anything. To
make it work, you only need four lines of Outlook object model code.
The tricky thing is that you need these lines in three places. Here’s
how you do it:

1. The first thing we want to do is show this dialog box when the user starts
Outlook. Go to the ThisOutlookSession project window (by double-clicking on
ThisOutlookSession under Microsoft Outlook Objects in the Project Window.)

2. Go to the Application_Startup event and replace the line “PollRestaurant”
with “PromptDialog.Show.” The code should look like this:

Private Sub Application_Startup()
PromptDialog.Show

End Sub
Note: PromptDialog is an object. Show is a method of that
object.

3. Close the ThisOutlookSession Code Window. Open the PromptDialog form. (If
it’s not already open, you can open it by double-clicking on PromptDialog
under Forms in the Project Explorer window.)

4. Now we want to do the right thing depending on which button the user
presses. Double-click on the button labeled, “Send Lunch Mail.”

5. The Code Window will open with the code for PromptDialog. VBA will create
the event that is called when the user presses the button. When the user
presses this button, we want to do two things. We want to send out the
lunch polling mail and we want to hide the dialog box. (We assume you have
already created the PossRestaurant macro from Lesson 4.) The code should
look like this:

Private Sub Yes_Click()
PollRestaurant
PromptDialog.Hide

The Super-Easy Guide to the Outlook Object Model 14

End Sub
Note: PromptDialog is an object (PromptDialog is the name you
set in the Properties window for the dialog box.) Hide is a method
of that object.

6. Close that window. Now double-click on the button labeled, “Don’t Send
Lunch Mail.” In that procedure, you only need to do one thing. Hide the
dialog box. The code should look like this:

Private Sub No_Click()
PromptDialog.Hide

End Sub
That’s it! You’re done! Close the Visual Basic editor, close Outlook and
restart to see your macro and your dialog box in action.

Hands-on Challenge #5

Create a third button on your dialog box that gives the user the option to send
out mail asking for your co-workers’ breakfast choice. Use the macro you created
from Hands-on Challenge #4. Have this dialog box appear both when you start
and when you quit Outlook.

Lesson 6: Programming Concept: Collections
So far, you have learned about objects, properties, methods, and
events. There is one last category you need to understand to fully use
the Outlook object model: Collections.

A collection is a special type of object—an object that is a group of other objects.
So, for instance, if “car” is an object, “cars” is a collection, a collection of cars.

A collection can also be a property of another object. Continuing with the car
example, “doors” can be a property of a “car” object as well as a collection of
“door” objects. Therefore, we can understand the relationship like this:

“Cars” is a collection of “car” objects. Each “car” object has a property
called “doors.” “Doors” is a collection of “door” objects.

“We are a collection of car objects. Each of us has a property called doors. Each of these
properties is a collection of door objects.”

Collections in Outlook

The Outlook object model has many types of collections. There is an example of
one on the very first example of this guide:
Set receiverOfMyMail =
newMail.Recipients.Add("everybody@thewholeworld.com")

The Super-Easy Guide to the Outlook Object Model 15

Recipients is a collection of Recipient objects. Recipients is also a
property of the NewMail object. It’s easy to see the usefulness of
collections. A piece of mail can be addressed to any number of names.
The Recipients collection gives us an easy way to manage these
names.

Other collection objects in Outlook include:

 Folders—A collection of Folder objects.

 Items—A collection of Item objects (such as a mail message,
appointment, etc.)

 Attachments—A collection of Attachment objects.

Methods and Properties of Collections

All collections have methods and properties that allow you to access the
individual objects in the collections. Three of the most important methods and
properties will be covered here.

 Count property—This property tells us how many individual objects are
in a collections. For example:

Dim numberOfRecipients
numberOfRecipients = newMail.Recipients.Count
In this example, numberOfRecipients is a variable. A variable is something
we define that allows us to record information and use it later. After this code
runs, the numberOfRecipients variable will be equal to the number of
recipients in the NewMail item.

Before we use a variable, we have to define it. We define it by using the key
word Dim. We can call our variables anything we like. For instance, this code
would work just the same:

Dim myDogBitMe
myDogBitMe = newMail.Recipients.Count
Note: A collection can be empty, in which case the Count property is zero.

 Item method—This method allows you to access a specific object in a
collection. For example:

Set aRecipient = newMail.Recipients.Item(2)
The number in the parenthesis indicates which recipient you want to access.
For this example, the object aRecipient will become the second Recipient
object in the Recipients collection.

You can also use a variable in the parenthesis. For example:

Dim numberOfRecipients
numberOfRecipients = newMail.Recipients.Count
Set theLastRecipient = newMail.Recipients.Item(numberOfRecipients)
Here, you are first setting the variable numberOfRecipients to be the
number of Recipient objects in the Recipients collection. Then you are
accessing the last recipient. So if there are five recipients, the last item can
be specified by the number 5. The last line will be the same as saying:

The Super-Easy Guide to the Outlook Object Model 16

Set theLastRecipient = newMail.Recipients.Item(5)
 Add method—This method allows us to add additional objects to a
collection. For example:

Set receiverOfMyMail = newMail.Recipients.Add("mom@family.com")
How you use the Add method might vary depending on which collection
you’re adding to. In most cases, like the one above, you will at least have to
specify a name for the new object (like mom@family.com).

One more note about variables: Because a variable records information, its value
only changes when you change it. As an analogy, think of a variable as an audio
tape:

Let’s say we create an audio tape called “MyCurrentAge.” On this audio tape, we
record your current age. Now let’s say we listen to the audio tape five years from
now. What will you hear when you play back the audio tape? You will hear, not
your current age, but your age five years ago. This is an important concept and
you can use it to correctly answer Hands-on Challenge #6.

Hands-on Challenge #6

Look at the following make-believe Visual Basic code and answer the questions
that follow. Assume that at the start, Papers collection is empty (its Count
property is equal to zero.) Hint: Step through the code line by line and keep
track of the numberOfPapers variable and the objects in the Papers collection.

Dim numberOfPapers
Set paper1 = MyDesk.Papers.Add("The Foofle Report")
Set paper2 = MyDesk.Papers.Add("The Mooble Report")
currentNumber = MyDesk.Papers.Count
Set paper3 = MyDesk.Papers.Add("The Garble Report")
Set paper4 = MyDesk.Papers.Item(currentNumber)
Set paper5 = MyDesk.Papers.Item(1)
Set paper6 = MyDesk.Papers.Item(currentNumber + 1)

1. What is the value of the variable, currentNumber?

2. What is the value of paper3?

3. What is the value of paper4?

4. What is the value of paper5?

5. What is the value of paper6?

Lesson 7: Programming Concept: If This, Then That
Sometimes we need to control which code is used based on the state of things.
For instance, in the PollRestaurant macro, it would make sense to send out lunch
mail, but only if the time is not past 1 PM. Or we may want to create a macro
that runs only when the user sends out mail to certain people or even a specific
number of people.

We can create procedures that respond to different conditions by using the
If...Then control statement. The If...Then control statement is one of many

mailto:mom@family.com

The Super-Easy Guide to the Outlook Object Model 17

Visual Basic tools that can direct the flow of your code. The format of the
If...Then control statement is as follows:

If <expression> Then
<code here>
End If
In the above code, <expression> represents something that can be
True or False. <code here> represents the code that will run if
<expression> is determined to be True.

<expression> examples:

Papers.Count = 3 True if there are three Paper objects in the Papers collection.

numRecipients > 0 True if the numRecipients variable is greater than 0.

numRecipients <> 5 True if the numRecipients variable does not equal 5.

The following two examples help demonstrate how the If...Then
control statement can be used.

If...Then Example 1: If this mail is addressed to anyone, then…

Dim numberOfRecipients
numberOfRecipients = myItem.Recipients.Count
If numberOfRecipients > 0 Then

Set myRecipient = myItem.Recipients.Item(numberOfRecipients)
MsgBox "The name of the last recipient is " &_

 myRecipient.Name & "."
End If
If numberOfRecipients = 0 Then

MsgBox "There are no recipients in this item."
End If
In this example, we display a dialog box that tells the user the name
of the last recipient in the mail message. If the mail message has no
recipients, we tell the user that.

Note: MsgBox is a Visual Basic statement used to display simple
messages. You can display a single string or any number of strings
joined by a “&” sign. In the above example, if the name of the last
person the mail is addressed to is “Sean Purcell,” the user would see a
dialog box like this:

If...Then Example 2: If this option is checked, then…

If we present the user with a dialog box like this:

The Super-Easy Guide to the Outlook Object Model 18

When the user clicks the OK button, we have to run different code
depending on whether the user checked the checkbox labeled “Just
save it in my Drafts folder.” If it’s not checked, we’ll send the
message. If it is checked, we’ll just save it so the user can send it
later.

To understand how this would work, first you need to know that a
checkbox is an object you can draw right onto a form—just like a
button or a label like you created in Lesson #5. Because it is an
object, it has properties. One of those properties is called “Value.” The
Value property can either be True (it’s checked) or False (it’s not
checked.)

The code needs to run when the user clicks the OK button. So we add
the following code to Click event of the OK button. In this example,
we’ll assume that the name of the form is PromptDialog, the name of
the button is OK, and the name of the checkbox is justSendDraft.

Private Sub OK_Click()
If PromptDialog.justSendDraft.Value = True Then

MyItem.Save
End If
If PromptDialog.justSendDraft.Value = False Then

MyItem.Send
End If
PromptDialog.Hide

End Sub
If the user selects the check box, Outlook now saves the message to
the user’s Drafts folder. If the user does not select the check box,
Outlook sends the message.

Hands-on Challenge #7

Make one addition to the PollRestaurant macro you created in lesson 4 and
added a dialog box to in lesson 5. In the dialog box, add a checkbox that allows
the user to edit the polling mail before sending it. The checkbox can have a
Caption like, “Edit the polling mail before sending.” If this is checked, don’t send
the mail—just create the mail and display it to the user.

Hint: You may want to create another PollRestaurant macro (called
PollRestaurant2) that displays the message by using the Display method of the
Mail Item object. Then when the user clicks the “Send Lunch Mail” option, you
would call one macro or the other depending on the user’s choice.

The Super-Easy Guide to the Outlook Object Model 19

Lesson 8: Real World Example #2
Suppose you’re an assistant to an executive in a large corporation. One part of
your job is sending out important e-mail to groups in your company. There are
about five different groups (distribution lists) you frequently have to send e-mail
to. Sometimes you’ll want to address an important e-mail to all 5 distribution
lists. Sometimes you’ll want to address an important e-mail to just one or two.

Because you send these e-mails out many times each week, you want to make it
super-easy for you to select which of these distribution lists you (or your
manager) want to send the mail to. You don’t want to have to go through your
company’s Global Address List (which has too many names to count) and you
don’t want to have to type each name or find each name from a list individually.

How do you make this task super-easy? By using the Outlook object model to
create a dialog box where you can just check which of these groups you want to
send your mail to!

For the purpose of this example, we’ll assume your company makes wacky
musical instruments. The names of the distribution lists that interest you (with
descriptions) are:

Blue Horn Sales Division All the sales personnel responsible for selling blue horns.

Gold Flute Sales Division All the sales personnel responsible for selling goldflutes.

Flute And Horn Marketing All the people responsible for marketing flutes and horns.

Blue Horn Design Team All the engineers responsible for designing horns.

Gold Flute Design Team All the engineers responsible for designing flutes.

Step 1: Create a Contact

Before we begin, let’s take a step back and imagine how you will use this name-
select dialog box. A simple way would be to have the dialog box show up when
you send your mail. At that point, you can check off which of the above
distribution lists you want to send the mail to. When you click OK, Outlook will
add the appropriate names and send the mail.

But wait. You don’t always want to see this dialog box every time you send mail.
You only want to see this dialog box when you need it. You can do this by first
checking who the mail is addressed to. If the first address is a specific name,
you will show the dialog box. If the first address is not that specific name, you
will not show the dialog box.

So to get started, first you need to create that contact:

1. Go to the Contacts folder in Outlook and create a new contact.

2. Set the name of the Contact to be something simple like “Group Mail.”
Whenever you want to send out mail to the above distribution lists, you will
use this name.

3. Set the e-mail address to be your e-mail address. (You won’t actually be
sending mail to this contact, so it doesn’t really matter what the e-mail
address is, as long as it’s there.)

4. Save and Close the contact.

The Super-Easy Guide to the Outlook Object Model 20

Step 2: Create the Dialog Box

Now we need to create the actual dialog box the user will see when sending mail
to the “Group Mail” contact:

1. In the Visual Basic Editor, click UserForm on the Insert menu.

2. Now you will have a new dialog box to add your own things to.

3. Add 3 labels, 5 check boxes, and 1 button so your form looks like this:

Remember, the Caption property sets the text the user sees in the dialog
box.

4. For the check boxes, the button and the form itself, set the Name property
to be descriptive. Examples:

Control Name

The form GroupMail

OK Button OK

Blue Horns Sales checkbox BlueHornSales

Gold Flute Design checkbox GoldFluteDesign

5. (Bonus item!) For each of the check boxes, set the ControlTipText to be the
description of each group. This is how you set the screen tips the user sees
when hovering over one of your controls.

Step 3: Make It Work

To make the program work, you will need to write Outlook object model code for
two events: When the user sends mail, and when the user clicks the OK button
of your dialog box. Since we just created the dialog box, let’s write the OK
button code first:

The Super-Easy Guide to the Outlook Object Model 21

1. From the form in the Visual Basic Editor, double click on the OK button. Add
one line to the OK_Click procedure to hide the dialog box:

Private Sub OK_Click()
GroupMail.Hide

End Sub
Note: GroupMail is the name of the form and OK is the name of the OK
button.

2. Now go to the Outlook event that is called when you send mail. Go to the
ThisOutlookSession module (double click on ThisOutlookSession under
Microsoft Outlook Objects in the Project Window.)

3. In the Application_ItemSend procedure, clear any existing Outlook object
model code (from the PollRestaurant macro you did in previous lessons.)

4. We will be entering the code in three steps. In the first step, we will make
sure that the mail is addressed to at least one e-mail alias:

Private Sub Application_ItemSend(ByVal Item As Object, Cancel As
Boolean)

If (Item.Recipients.Count > 0) Then
Set firstRecipient = Item.Recipients.Item(1)

End If
Cancel = True

End Sub
The If statement tells us whether the number of recipients is greater than 0.
If it is greater than zero, we will continue on with our code.

Note that if the mail is not addressed to anyone, the next line,

Set firstRecipient = Item.Recipients.Item(1)
would not work because there would be no first recipient. That is why it is
important to make sure the mail is addressed to at least one e-mail alias.

Intermission—Using the VBA Debugger

Before we finish, now is a good time to introduce you to the Visual Basic Editor
Debugger. The Debugger is used to help you see how your code works and to fix
any problems that might exist in your code.

To use the Debugger, you create a “Breakpoint” in your code. Create a
breakpoint by clicking on the light verticle bar to the left of your code. Here you
can add and remove breakpoints (they look like little Stop signs.)

As an example, create a breakpoint at the first If statement:

The Super-Easy Guide to the Outlook Object Model 22

Now when your code runs, your code will be stopped at this line. From there,
you can “step” through your code by pressing the F8 key. When you just want
your code to continue running, press F5.

Try it! With your breakpoint at the first If statement, create a piece of mail in
Outlook and don’t address it to anyone. Send the mail. VBA will open stopped to
the line where you set the breakpoint. Hit F8. It should skip all the code within
the If statement. Now create another piece of mail with recipients. Send the
mail. Now VBA should go to the code within the If statement. Cool, huh?

Step 4: Finishing the Code

Let’s continue making this work:

1. Add the following 5 lines of code within the first If statement:

Private Sub Application_ItemSend(ByVal Item As Object, Cancel As
Boolean)
If (Item.Recipients.Count > 0) Then
Set firstRecipient = Item.Recipients.Item(1)

If StrComp("Group Mail (E-mail)", firstRecipient.Name,
vbBinaryCompare) = 0 Then

Item.Recipients.Remove 1
GroupMail.Show

End If
Cancel = True

End If
End Sub
After we set the firstRecipient object to be the first recipient in the mail
message, we use a Visual Basic function, StrComp, to see if that recipient is
the same as the placeholder contact we created at the beginning of this
lesson. (Note that Outlook appends the names of personal contacts with “(E-
mail).”) If StrComp(string1, string2, type of comparison) = 0, that tells us
that string1 and string2 are identical.

If the first recipient is our “Group Mail (E-mail)” contact, we then remove that
contact from the mail. We do that via the Remove method which is common
to all collections. The “1” tells VBA to remove the first recipient in the
collection.

Then we show the user the GroupMail dialog box.

Use the Visual Basic Editor Debugger to make sure this works properly with
mail addressed and not addressed to the Group Mail contact.

The Super-Easy Guide to the Outlook Object Model 23

We put the line, Cancel = True, so that we don’t actually send the mail
message when this procedure is done. At the end, you may want to take this
line out, but it helps to be able to use the same mail (and not send out a
bunch of bogus mail) until we’re done.

2. Finally, add code after you show the GroupMail dialog box which behaves
based on the check boxes the user set:

Private Sub Application_ItemSend(ByVal Item As Object, Cancel As
Boolean)
If (Item.Recipients.Count > 0) Then

Set firstRecipient = Item.Recipients.Item(1)
If StrComp("Group Mail (E-mail)", firstRecipient.Name,

vbBinaryCompare) = 0 Then
GroupMail.Show
Item.Recipients.Remove 1
If GroupMail.GoldFluteDesign.Value = True Then

Set newRecipient = Item.Recipients.Add("Gold Flute Design
Team")

newRecipient.Resolve
End If
If GroupMail.GoldFluteSales.Value = True Then

Set newRecipient = Item.Recipients.Add("Gold Flute Sales
Team")

newRecipient.Resolve
End If
If GroupMail.BlueHornDesign.Value = True Then

Set newRecipient = Item.Recipients.Add("Blue Horn Design
Team")

newRecipient.Resolve
End If
If GroupMail.BlueHornSales.Value = True Then

Set newRecipient = Item.Recipients.Add("Blue Horn Sales
Team")

newRecipient.Resolve
End If
If GroupMail.Marketing.Value = True Then

Set newRecipient = Item.Recipients.Add("Flute and Horn
Marketing")

newRecipient.Resolve
End If
Cancel = True

End If
End If
End Sub

This may seem like a lot of code, but it’s actually just four lines repeated five
times, once for each of the check boxes in the dialog box.

For each checkbox, we check to see if the user checked it. If the user did check
it, we add the appropriate recipient to the mail message. We then resolve the
name of recipient (have Outlook associate it with a real name) using the Resolve
method of the Recipient object.

If you want to actually send the mail automatically, remove the line, “Cancel =
True.”

Note: The program will fail if it tries to send mail after resolving names that
don’t exist. To make it work, create a distribution list (File.New.Distribution List)
in Outlook with names identical to the recipients you specified (“Gold Flute Sales
Team,” “Blue Horn Design Team,” etc.) in the code written in this step. Add at
least one address to each distribution list you create.

The Super-Easy Guide to the Outlook Object Model 24

Hands-on Challenge #8

Make this lesson work for you! Think of how you could apply this program to
your work. Change the code and the dialog box to work with five (or more)
distribution lists that you often have to send important mail to.

Where to Go from Here
Now you have been introduced to the Outlook object model. You can now create
custom Outlook solutions.

Of course, this guide only scratched the surface of all the powerful things the
Outlook object model can do. Use the online Help to explore the many
collections, objects, methods, and events at your disposal.

To use the online Help, from VBA, select Object Browser from View menu. You
will see a dialog box that allows you to find all the tools available to you.

To see the Outlook specific tools, select Outlook from the top left dropdown list
in the Object Browser. After Outlook is selected, click on the Help icon (the “?”
graphic on the top right of the window) to view the online Help associated with
the Outlook object model.

A window will show up on the right of the screen. The boxes you see in this
window represent objects and collections of objects in the Outlook object model.
(You can tell which is which by the key at the bottom of the window.)

Look at the top box labeled “Application.” Every time you used
ThisOutlookSession in your code, you’ve been using an Application object. Try
clicking on the “Application” box. Here, you get all sorts of information about this
object. There are also many links which can take you to related topics.

Try clicking on the “Methods” link in blue near the top of the window. The
window that pops up shows you all the methods that are associated with the
Application object. For instance, you’ll see the CreateItem method, which we

The Super-Easy Guide to the Outlook Object Model 25

used in the very first example in this guide. Double click on that method (or any
method) to learn more about it.

You can also use the Contents in Help to get help on a specific area of the
Outlook object model. From the help window, click on the Show icon (the one
with the yellow arrow pointing left) to see an expanded view of the Help.

From here, you can explore all the different capabilities of the Outlook object
model. For instance, let’s say you wanted to work with appointments. Click on
the Contents tab, and look for the Appointment object under Microsoft Outlook
Visual Basic Reference.

All the information you need is here. And all the help files have hyperlinks in
them so you can quickly navigate between related subjects, for instance to see
what elements or methods a certain object has. Many of the help files also have
examples that you can learn from and use in your own code.

Congratulations on becoming a real Outlook object model programmer! Now you
can start using the Outlook object model to save your company time and money!

The Super-Easy Guide to the Outlook Object Model 26

Appendix: Hands-on Challenge s Answers and
Explanations

Hands-on Challenge #1

Try setting the body of the message to “This is where the content of the
message goes.”

To set the body, we follow the model of the line where we set the
subject of the mail item:

Sub MyFirstMacro()
Set NewMail = ThisOutlookSession.CreateItem(olMailItem)
NewMail.Subject = "(your name here) says: This really is easy! :)"
NewMail.Body = "This is where the content of the message goes."
NewMail.Display

End Sub

Hands-on Challenge #2

Open up the MyFirstMacro macro in the Visual Basic Editor and change the code
to use a new procedure (i.e., MakingMail) to create a new piece of mail five
times.

To create five pieces of mail, we need to call the procedure MakingMail from
MyFirstMacro five times:

Sub MakingMail()
Set NewMail = ThisOutlookSession.CreateItem(olMailItem)
NewMail.Subject = "Hey, this Sub/End Sub thing is easy too!"
NewMail.Display

End Sub
Sub MyFirstMacro()

MakingMail
MakingMail
MakingMail
MakingMail
MakingMail

End Sub

Hands-on Challenge #3

Look at the following make-believe object model code and determine which parts
are objects, methods, and properties (there are three of each):

Set PetStore = ShoppingMall.GetStore(aPetStore)
PetStore.OpeningTime = 9 AM
Set Dog = PetStore.GetPet(aDog)
Dog.Breed = "Cocker Spaniel"
Dog.Color = "Blond"
Dog.WagTail

The Super-Easy Guide to the Outlook Object Model 27

Objects Methods Properties

ShoppingMall GetStore OpeningTime

PetStore GetPet

Dog WagTail Color
Breed

GetStore is a method, something the object ShoppingMall can do. GetPet is a
method, something the object PetStore can do. WagTail is a method, something
the object Dog can do. OpeningTime is a characteristic of the object
ShoppingMall. Breed is a characteristic of the object Dog. Color is another
characteristic of the object Dog.

Hands-on Challenge #4

To create a new macro that polls your co-workers for their breakfast choice,
create a macro like the PollRestaurant macro and call it PollBreakfast:

Sub PollBreakfast()
Set NewMail = ThisOutlookSession.CreateItem(olMailItem)
NewMail.Subject = "Please open and make your vote for breakfast!"
NewMail.Body = "Click one of the buttons to make your vote." &_

"I’ll be tallying first thing in the morning." &_
"Breakfast will be in the break room at 9 AM."

NewMail.VotingOptions = "Wake Up Land; Breakfast Blamos;" &_
"Eggs n’Stuff"

Set receiverOfMyMail =
NewMail.Recipients.Add("hungrypeople@mycompany.com")
NewMail.Send

End Sub
Next, because you want this to run every time you quit Outlook, call the
PollBreakfast macro on the ThisOutlookSession object’s Quit event (in the
ThisOutlookSession Module Window):

Private Sub Application_Quit()
PollBreakfast

End Sub

Hands-on Challenge #5

First, we need to make some changes to the dialog box. Create a new button
and make other adjustments to make the dialog box look something like this:

The Super-Easy Guide to the Outlook Object Model 28

Double click on the “Send Breakfast Mail” button and make it so that you call
your PollBreakfast module and hide the dialog box when the user clicks it (we
assume the name of the button is Breakfast):

Private Sub Breakfast_Click()
PollBreakfast
PromptDialog.Hide

End Sub
Now you need to change ThisOutlookSession’s Quit event (in the
ThisOutlookSession Module Window) to show the PromptDialog dialog box when
the user quite Outlook:
Private Sub Application_Quit()

PromptDialog.Show
End Sub

Hands-on Challenge #6

Here is the code:

Dim numberOfPapers
Set paper1 = MyDesk.Papers.Add("The Foofle Report")
Set paper2 = MyDesk.Papers.Add("The Mooble Report")
currentNumber = MyDesk.Papers.Count
Set paper3 = MyDesk.Papers.Add("The Garble Report")
Set paper4 = MyDesk.Papers.Item(currentNumber)
Set paper5 = MyDesk.Papers.Item(1)
Set paper6 = MyDesk.Papers.Item(currentNumber + 1)

Here are the questions about the code with their answers.

1. What is the value of the variable, currentNumber?

Answer: 2

Explanation: When we set the value of currentNumber, there are only two
papers, paper1 and paper2, in the MyDesk.Papers collection.

2. What is the value of paper3?

Answer: The Garble Report

The Super-Easy Guide to the Outlook Object Model 29

3. What is the name of paper4?

Answer: The Mooble Report

Explanation: Because currentNumber equals 2, this sets paper4 to the
second paper in the collection, The Mooble Report.

4. What is the name of paper5?

Answer: The Foofle Report

5. What is the name of paper6?

The Garble Report

Explanation: Because (currentNumber + 1) equals 3, this sets paper6 to the
third paper in the collection, The Garble Report.

Hands-on Challenge #7

First, we need to add a checkbox with the name “EditMail” to the PromptDialog
form:

Next, we need to create an alternate PollRestaurant macro (called
PollRestaurant2) that does not send the mail after creating it. In the
same Module Window where PollRestuarant is, create PollRestaurant2.
(Use copy and paste, add a “2” to the name of the procedure and
remove the last line that sends the mail.)

Sub PollRestaurant2()
Set NewMail = ThisOutlookSession.CreateItem(olMailItem)
NewMail.Subject = "Please open and make your vote for lunch!"
NewMail.Body = "Click one of the buttons above to make " &_

"your vote. I’ll be tallying at 11 AM. " &_
"Lunch will be in the break room at noon."

NewMail.VotingOptions = "Taco Temple; Burger Palace; " &_
"Chicken Chums; Pasta Hut"

Set receiverOfMyMail =
NewMail.Recipients.Add("hungrypeople@mycompany.com")
End Sub
Now, when the user clicks the Send Lunch Mail button, we need to call
either PollRestaurant or PollRestaurant2 depending on whether
EditMail is checked:

The Super-Easy Guide to the Outlook Object Model 30

Private Sub Yes_Click()
If PromptDialog.EditMail.Value = False Then

 PollRestaurant
End If
If PromptDialog.EditMail.Value = True Then

PollRestaurant2
End If

 PromptDialog.Hide
End Sub

Hands-on Challenge #8

There is no specific solution to Hands-on Challenge #8. You simply need to
make adjustments to the code and to the dialog box to make the macro work for
you.

The Super-Easy Guide to the Outlook Object Model 31

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date
of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the
part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
DOCUMENT.

© 1999 Microsoft Corporation. All rights reserved.
Microsoft, the Office logo, Outlook, Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation
in the U.S.A. and/or other countries.

Other company and product names mentioned herein may be the trademarks of their respective owners.
The names of companies, products, people, characters, and/or data mentioned herein are fictitious and are in no way intended to
represent any real individual, company, product, or event, unless otherwise noted.

	White Paper
	Published: March 1999
	White Paper
	Published: March 1999
	Introduction
	Why Should I Learn How to Use Outlook Object Model?
	Using This Guide
	What You Need to Know Before You Get Started
	What You’ll Know When You Finish the Lessons
	Setting Up

	Lesson 1: Getting Started
	To start writing a macro:

	The Microsoft Visual Basic Editor
	To complete the macro:
	About Security
	Hands-on Challenge #1

	Lesson 2: Programming Concepts: Sub…End Sub and Procedures
	End Sub
	End Sub
	MakingMail
	NewMail.Display
	Hands-on Challenge #2

	Lesson 3: Programming Concepts: Objects, Methods, and Properties
	NewMail.Display
	Hands-on Challenge #3

	Lesson 4: Real-World Example #1
	To create the PollRestaurant macro
	Using Events
	To run your macro each time Outlook starts up

	PollRestaurant
	End Sub
	Hands-on Challenge #4

	Lesson 5: Creating Your Own Dialog Boxes
	To create the “Lunch for Co-workers” dialog box
	Making Your Dialog Box Work
	Hands-on Challenge #5

	Lesson 6: Programming Concept: Collections
	Collections in Outlook
	Methods and Properties of Collections

	Dim numberOfRecipients
	Dim myDogBitMe
	Dim numberOfRecipients
	Hands-on Challenge #6

	Lesson 7: Programming Concept: If This, Then That
	If <expression> Then
	If...Then Example 1: If this mail is addressed to anyone, then…

	Dim numberOfRecipients
	End If
	If...Then Example 2: If this option is checked, then…

	If PromptDialog.justSendDraft.Value = True Then
	Hands-on Challenge #7

	Lesson 8: Real World Example #2
	Step 1: Create a Contact
	Step 2: Create the Dialog Box
	Step 3: Make It Work

	Set firstRecipient = Item.Recipients.Item(1)
	End If
	Cancel = True
	End Sub
	Intermission—Using the VBA Debugger
	Step 4: Finishing the Code

	Item.Recipients.Remove 1
	GroupMail.Show
	End If
	Cancel = True
	If GroupMail.GoldFluteDesign.Value = True Then
	End If
	If GroupMail.GoldFluteSales.Value = True Then
	End If
	If GroupMail.BlueHornDesign.Value = True Then
	End If
	If GroupMail.BlueHornSales.Value = True Then
	End If
	If GroupMail.Marketing.Value = True Then
	End If
	Cancel = True
	Hands-on Challenge #8

	Where to Go from Here
	Appendix: Hands-on Challenge s Answers and Explanations
	Hands-on Challenge #1

	NewMail.Display
	Hands-on Challenge #2

	NewMail.Display
	Hands-on Challenge #3
	Hands-on Challenge #4

	NewMail.VotingOptions = "Wake Up Land; Breakfast Blamos;" &_
	"Eggs n’Stuff"
	NewMail.Send
	PollBreakfast
	Hands-on Challenge #5

	PromptDialog.Show
	Hands-on Challenge #6

	Dim numberOfPapers
	Hands-on Challenge #7

	End Sub
	If PromptDialog.EditMail.Value = False Then
	End If
	PollRestaurant2
	Hands-on Challenge #8

